=7 PRESS

Rich Heilman, Thomas Jung

Next Generation ABAP™ Development

Next Generation m

| ABAP" Development

WWW.Sap-press.com

o,$.

Galileo Press

Bonn « Boston

Contents at a Glance

N

A U A~ W

10

1
12
13
14
15
16

17

Workbench Tools and Package Hierarchy
Data Dictionary Objectsoooo
Data Persistence Layercoocoeiiiiiii,
Consuming a Web Servicecccocoeeininn.
Shared Memory Objectsccccceiiiiiiiis
Model Classc.ooviviiiiiiiiii e

ABAP and SAP NetWeaver Master Data
Management ...

ABAP Unit ...,
Exposing a Model as a Web Service

Exposing a Model as a Web Service Using
SAP NetWeaver Process Integration

Classic Dynpro UI/ALV Object Model
Web Dynpro ABAPccooccoiiiiiiiiiiiee
Business Server Pagesoooiiiiiiiii,
Adobe FOrmscccciiiiiiii
SAP NetWeaver Portalcccoiii
RSS Feed Using an ICF Service Node
ClOSING ..o
Code Samplesccccooeiiiiiiii

The Authors ...

Www.sap-press.com

Contents

[} o Yo [Tt oY o T 15

1 Workbench Tools and Package Hierarchy

1.1 Logonand EXPlOrecccceiviiiiiiiiiiciee e 24
1.1.1 Workbench Object Browsercccccevviiiiiniiineennnn. 24
1.1.2 Object Browser Listcccoiiiiiiiiiiiiiic e 25
1.1.3 Workbench Settingscccoccoiviiiiiiiii 28
1.1.4 New ABAP Editorccooooiiiiiiiiiii 28
1.1.5 Additional New Workbench Toolsccccoe 32
1.1.6 Debugger ..o 36
1.2 Package Hierarchy for the Projectccccociiiiiiiiiiiii 39
1.2.1 Project Requirementsccooiiiiii 39
1.2.2 Package Hierarchycccccooiiniiiiiiciiiicniiciic e 40

Data Dictionary Objects

2.1 Designing Data Relationshipscccccooiiniiiiniiiiniiiniienie, 43
2.1.1 Table Relationship Graphiccccocvveiviiiiiiiiiiieieen 44
2.1.2 SAP Data Modelerccccoiiiiiiiiiiiiic e 46
2.2 Data Dictionary Fixed Value Domainsccccccoviieniiicnnnnne 47
2.2.1 Single Value Domainscccccoiiiiiiiiiiiiinine 48
2.2.2 Interval Value DOMAINScccoeveiiieruiiniiiieiicenieeee 48
2.3 Data Dictionary Text Tablesccccoociiiiniiiiiiiieece, 49
2.3.1 Data Elements and Domainscccccoeviiiiininnnnn. 50
2.3.2 Transparent Table Creation and Relationships 51
2.3.3 Maintenance VIiewccccoiiiiiiiiiii 56
2.3.4 Generated Table Maintenancecccccoviiviinineenns 58
2.4 Data Dictionary Data Tablesccccoiviiniiiiiiniiicce, 61
2.41 Enhancements ... 61
2,42 INAEXES .evviiiiiiiiiiiiiee ettt 62
2.4.3 LOCk ODBJECtS ..oovviiiiiiiiiiiice 64
2.5 Search Helps ..o 66

Data Persistence Layer

3.1 Persistent ObJectsc.ooveiviiiiiiiiiec e 72
3.1.1 Creating the Persistent Object Classccccceeeen. 73
3.1.2 Base Classes and Agent Classescc.ccocevvircrinrnnnnn. 75

WWW.Sap-press.com 7

Contents

3.2

33

3.4

3.1.3 Persistent Data Mapperccccooeeeviiiii, 77
3.1.4 Coding with a Persistent Objectccccccoviieiiiiinens 79
Exception Classesccooiiiiiiiiiiii e 82
3.2.1 Advantages of Exception Classesccccociiiinennnn. 83
3.2.2 Creating an Exception Classc.ccccoevviriiiiniicrinnennn, 84
Business Object Classescccovureriiieiiieiiiierieeee e 89
3.3.1 What Is a Business Object Class?ccccoecuvveiriiirennns 920
3.3.2 Business Object Class Structurecccccvvciiiinninneens 92
3.3.3 Multiple Object Selectioncccceeviiiiiiiiiiiiiiee, 95
3.3.4 Select-Options as a Query Criteriacccceveveenerennn. 97
3.3.5 Complex Business Objectscccccevviiiiiiniiieinniinenns 100
3.3.6 Modification Operationscccoceveriiiniiiiiienieenn, 103
3.3.7 ZIP COMPIESSION ...ccoiiiiiiiiiiiieiciciiiice e 104
Data Load Programsccccciiiiiiiiiiiiiiiicics e 107
3.4.1 Test Data Generatorcccccooviiiiiiiiiiii 107
3.4.2 Backup and Recovery Programcccccevniiiienninnnennns 112

Consuming a Web Service

4.1

4.2

4.3

Proxy Generationccccccciiiiiiiiiiiiiiiiii 121
4.1.1 Accessing the WSDL Documentccccccoiiiiiinnne. 121
4.1.2 Creating the Client Proxycccccooiiiiiiiiiciiiiinie 122
4.1.3 Logical POrtsccooiiiiiiiiiiii 125
4.1.4 Using the Client Proxy Objectccccccveviiiiiiiiiinnnennn 127
4.1.5 Implementing into the Business Object Layer 128
Logical POrtsocooiiiiiii e 130
421 Runtime ... 130
4.2.2 Call Parametersccccocviiiiieniiieniieee e 132
4.2.3 Operationsccccccviiiiiiiiiiiii 136
4.2.4 EITOrS oo 136
425 PIRECEIVEr ..oooiiiiiiiiicc 137
4.2.6 Application-Specific Global Settingsccccocceee. 138
4.2.7 Application-Specific Operationsccccceevviveeiinnnen. 138
Extended Protocolscccoociiiiiiiiiiiic e 140

5 Shared Memory Objects

51

Getting Started ..o 144
5.1.1 Area Root Class Creationccccocoeiiiiiiiiiiiicnine 144
5.1.2 Defining the Shared Memory Areaccccocoeerenne 150
5.1.3 Testing the Shared Memory Objectccccoceenine 152
5.1.4 Shared Memory MonNitorcccocviiiieiiieiiiieiie e 154

WWW.Sap-press.com

7

5.2

53

Contents

Automatic Preloadingccccvoiiiiiiiniiinii e 155
5.2.1 Adding the Interfacecccooiiiiiiiiiiiiie 155
5.2.2 Modifying the Read Programcccccciiiiiiiiennenne 157
Implementing into the Business Object Layer 157
5.3.1 Developing a Test Programc.cccoceeriueiniiiciiienneens 158
5.3.2 Modifying the Business Object Classc.ccccoeennrene 159
5.3.3 Testing the Changesc.cccceviiiiiiiiiiic e 162

Model Class
6.1

6.2

6.3
6.4

6.5

Class OVEIVIEWcccuuiiiiiiiiie ettt 163
6.1.1 What Is Model View Controller?ccccccceninninnn. 164
6.1.2 Creating the Model Classcccccoiiiiiiiiiiinin, 164
Transactional Methodscociiiiiiiiiiin 168
6.2.1 Read Methodccoooiiiiiiiii e 169
6.2.2 Record Locking Methodscccccovviiiiiiiiiieiiiiines 171
6.2.3 Save Method ..., 172
6.2.4 Getters ..o 173
Utility Methodsoocviiiiiii 175
EMailiNg oo 177
6.4.1 Email Setupcooiiiiii 178
6.4.2 Running an Email Test ... 182
6.4.3 Email Methodcooovviiiiiii 183
Regular EXPreSSioNSceeiiiieniieririe it et 189

ABAP and SAP NetWeaver Master Data Management

7.1

7.2

7.3

What Is Master Data Management?ccccocvvvvvieniieninnennn, 194
7.1.1 Technical Architecturecccocooviiiiiiiiiiiiiieiiieees 194
712 CHENES v 196
7.1.3 Basic MDM Administrationccccovviiniiiiinenns. 198
7.1.4 Modeling in SAP MDMcooiiiiiiiiiiiiiiiiciic e 200
Configuring the SAP MDM ABAP APlccccooiiiiiiiiiiiiiiceie 201
7.2.1 Installation of the MDM APl Add-onccccooeeennene 202
7.2.2 Configuring the MDM API Connectionc.......... 204
7.2.3 Authentication with the MDM APlcccovnniee. 205
Coding with the MDM ABAP APlccooviiiiiiiiiiiiiiccniee 206
7.3.1 Class-Based APlccccoiiiiiiiiiiiiee et 207
7.3.2 Function Module Based APlccoooiviiiiiiieiiiiees 209
7.3.3 Non-Unicode ABAP Systemsccccooeiiiiiiiiiinninnns 211
7.3.4 Simple Readcoooiiiiiiiiiic e 212

WWW.Sap-press.com 9

Contents

735 FullReadcccoiiiiiiiiiiici 215
7.3.6 Integrating the MDM Repository into Your Business
Object Class ..o 217

8 ABAP Unit

8.1 Overview of ABAP Unit TEStSccvvvviiiiiiiiiiiieieeiecceeec e 221
8.1.1 TeSt ClaSSES ..vvveiiiiiieiiiiiie ittt 222
8.1.2 Test Attributes ..., 222
8.1.3 Test Methodscoveiiiiiiiiiicii 225
8.1.4 Assertions ..., 225
8.2 Creating ABAP Unit Testscccccooiiiiiis 227
8.2.1 Creating the ABAP Unit Test Classcccoeierinrnnnen. 227
8.2.2 Fixture Implementationccccooeiiiiiiiiiniiic e 229
8.2.3 Test Method Implementationscccccoviieiniincs 229
8.3 Executing the ABAP Unit Testcoooiviiiiiiiiii e, 232

Exposing a Model as a Web Service

10

9.1 Web Service Definitioncccccceeuvuerieiriieiieeeieeiieeereeereeesennennnns 235
9.1.1 Service Definition Wizardcccoooiiiiiiiiiiee 236
9.1.2 The Service Definitionooovviiiiieiieiiiiieee e, 240
9.1.3 Releasing the Web Servicecccccevviiniiiiiicnincnnn, 241
9.2 Testing the Web Servicecccocoviiiiiiiiiiiicec e 243
9.2.1 Web Service Administrationcccceeei . 243
9.2.2 Using the Web Service Homepageccccocceveennnn. 244

Exposing a Model as a Web Service Using

SAP NetWeaver Process Integration

10.1 Modeling a Service in SAP NetWeaver Process Integration 250
10.1.1 Integration Buildercccooviiiiiiiiii 251
10.1.2 Simple Data TYPeS ...cccveiiiiiiiiiieiiee e 253
10.1.3 Complex Data TYPEScccoeeeiieiriiiiiieeiiee e 259
10.1.4 MeSSage TYPES ..ocooiiiiiiiiiiiiecei e 261
10.1.5 Message Interfaceccccovieiriiiiiieiiiiiiic e 263

10.2 Implementing the Service as a Server Proxycccccceevicinneenns 264

10.3 Creating a Service Definitionccccoiiiiiiiiii 270

WWW.Sap-press.com

Contents

111

ALV Object Model OVEIVIEWcocceiieiiiiiieiiiieeeiee e 273
11.1.1 ALV Tool OVerviewccccoiiiiiiiiiiiiieeee e 274
11.1.2 Display TYPES ...ocoiiiiiiieiiee e 276
Getting Startedcccooiiiiiiiii 276
11.2.1 Package Selectioncccccciiiiiiiiiiiiiiic e 277
11.2.2 Basic Program Codingccccoviiiiiiiiiiiiiii e 277
Modifying the ALV Output ..., 281
11.3.1 ALV FUNCLIONS ..oiiiiiiiiiiiiiiiiiiiiiiii e 282
11.3.2 Modifying Column Attributescccooveeriiiiiciniees 283
11.3.3 Modifying Display Settingsccccoovveviiiiniiiniienee 285
11.3.4 Saving Layout Variantscccii, 286
Making the ALV Interactivecccccooiiiiiiiiiiii e 287
11.4.1 Adding Buttonscccccooiiiiiiiiiiiii 287
11.4.2 Defining Selectionsc.ccocoveiiiiiiiiiiicicce, 289
11.4.3 Event Handlingcccccooviiiiiiiiii e 290
Object Orientiation with Classic Dynproccccocoeciiernnenn. 294
11.5.1 Restructuring the Dialog Programcccccoeeenen. 294
11.5.2 Creating the Controller Classccccoviiriiiiiiiinieens 296
11.5.3 Enjoy Control EVENtSc.ccoovviiiiiiiiiiiiiiccnieciiec e 299
11.5.4 Dynpro Eventscccccoiiiiiiiiiiiiiiiiiees 300

12 Web Dynpro ABAP

121

12.2
12.3

12.4

12.5

Overview of the COmMpoNENtsccocveviiiiiiiiiiiiiiic e 304
12.1.1 Course Frame Componentccoooiiiiieniniiinne, 305
12.1.2 Faculty Detail Componentcoccoeiiiiiiiiiniic 305
12.1.3 Faculty List Componentcccceviieniiieiniiiiniieneenn, 307
12.1.4 Course Details Componentcccocvvviniiiieiniieeennne, 308
Component UsSageccccoeeiiiiiiiiiiiiiiiiii e 309
General Ul FEatUrescocooiiiiiiii e 311
12.3.1 Value Help ..o, 311
12.3.2 Required Fieldsccccoiiiiiiiiiiiiiieee e 314
12.3.3 Change/Display Modeccocoiiiiiiiiiie 317
ALV Component ... 320
12.4.1 ALV Component Usageccccooviiiiiiiiiiciiiincc, 320
12.4.2 Context Mappingccccccooeiiiiiiiiiini e, 321
12.4.3 ALV Implementationcccoooovviiiiiiniiiccice e 322
Dialog Popup WiNdOWcccoviiiiiiiiiieiiie e 325
12.5.1 Windows from the Same Component 325
12.5.2 Windows from an External Component Usage 327

1

WWW.Sap-press.com

Contents

12.6

12.7

12.8

Table POPINS ...ooviiiiiieie e 332
12.6.1 What Is a Table Popin?ccccociiiiiiiiiiiiieeeeee 332
12.6.2 Designing the Table Popin ..., 333
12.6.3 Context Designcccocoviiiiiiii 334
12.6.4 Logic to Populate the Context for a Popin 335
File Upload/Downloadccccoovuiiiiiiiiiiiiiiiieeeee e 336
12.7.1 File DOWNnIoadscccceeiviiiiiiiiiieciiiceeee e 336
12.7.2 File Uploadscocoooiiiiiiiiiie e 339
Web Dynpro Debuggerc.ccccooiiiiiiiiiii 341

13 Business Server Pages

131

13.2

Internet Facing BSP Applicationccccoiiiiiiiiiiiiie 346
13.1.1 Stateless versus Stateful ... 346
13.1.2 Application Layoutcccveiiiiiiiiiiieee 348
13.1.3 Custom Style Sheetsccccoviviiiiiiii 349
13.1.4 Course Overview Pageccccvviiiiiiiiiiiiis 353
1315 AJAX o 356
BSP EXtENSIONS ...ocviiiiiiiiii 363
13.2.1 Upload of Open Source Solutioncccceoveviiienneenn. 363
13.2.2 Creating the BSP Extensionccccooceiiiiiiiiiniens 365
13.2.3 Creating the BSP Extension Element 366
13.2.4 Design Time Validationc.ccccociiiiiiiiiin, 369
13.2.5 Runtime Validation ..o 370
13.2.6 Element Renderingcccccoviiviiiiiiniiiieic e 371
13.2.7 Testing the New Extensionccccooiiiiiiiiiicnienne 373

14 Adobe Forms

12

141

14.2

14.3

Infrastructure and Setup ... 376
14.1.1 Adobe Document Services Infrastructure 376
14.1.2 Exposing the Service from the J2EE Engine 377
14.1.3 Configuring the Service Interface from ABAP 378
Function Module Based FOrmsccccooiiiiiiiiiiciicci, 381
14.2.1 Creating the Interface ..., 381
14.2.2 Form Interface to Context Mappingc.ccccoeveeenerene 383
14.2.3 Form Layout Editorcccceoviiniiiiiiiiice 387
14.2.4 Coding Against the Form Function Module 389
Web Dynpro Based FOrMSccccoeviiiiieniiiiieeiiiee e 395
14.3.1 Web Dynpro View Creationccccoceiiiiiiiicnnnene 395
14.3.2 Form Design from Web Dynproccccoceeiiinnnene 397

WWW.Sap-press.com

Contents

14.3.3 Table Output in FOrmMSsccooiiiiiiiiiieiiiee e 398
14.3.4 Making the Form Interactivecccccoviiiiiiinennnn. 401
14.4 Offline FOIMS ..ooiiiiiiiiiiiiiie e 402

SAP NetWeaver Portal

15.1 Creating a System Configurationccccooiiiiiiiiiii. 407
15.1.1 User Mappingccoovveriiiiiiiiiiiiine e 414
15.1.2 System Test ... 415

15.2 Creating Portal Contentccocoviiiniiiniiieic e 416
15.2.1 iView Creation ... 416
15.2.2 Role Assignmentcccooiiiiiiiiiiii e 420
15.2.3 Running Examplesc..cccooviiiiiiiii, 421

15.3 Portal EVENtiNG ..oc.eoiiiiiiiiiiii e 424
15.3.1 Throwing a Portal Eventcccccoiiviiiiiii 425
15.3.2 Catching a Portal Eventccocoiiviiiiniice e, 427

15.4 SAP NetWeaver Visual COMPOSErccccociiiiiiiiiiciiiieeeee 429
15.4.1 Consuming a Web Serviceccccceoviiiiiiiiiiiiinenn, 431
15.4.2 Consuming an RFCccooiiiiiii s 432
15.4.3 Building the User Interfaceccccceviiiiiiiiniiineen, 436
15.4.4 Building Value Help ... 437

15.5 SAP NetWeaver Business Clientcccocoviiiiiiiiiinnn, 443

RSS Feed Using an ICF Service Node

16.1 What Is an ICF Service NOde?ccooevviiiiiiiiiiiiie e, 450
16.2 Handler RSS FEedoooiiiiiieii e 451
16.2.1 HTTP Handler Class Test Implementation 452
16.2.2 ICF Node Creation and Handler Association 453
16.2.3 RSS Handler Implementation ... 454
16.2.4 RSS Handler Application Logiccccoeiiiiiiiiinicens 455
16.2.5 Handler for Attachment Downloadscccccceeeeunnnnn.. 461

A Code SAMPIES .o 469
B The AULNOIS ..o 473
Yo =S TSR 475

WWW.Sap-press.com 3

Introduction

This book represents 20 years of collective experience from real world ABAP
Development projects. When setting out to write this book, our challenge
was to share what it was like to be part of a cutting edge ABAP development
project with our readers.

Ideally, our goal was for each reader to be able to sit down and observe an
entire project from start to finish, and therefore learn the integral techniques
of modern ABAP development. They would be able to see the latest ABAP
technologies in action, in addition to examining the design and development
processes used to maximize these technologies. Unfortunately, few develop-
ers ever get the opportunity to observe a project in this way. Too often they
have to learn on the job, while dealing with unrealistic deadlines. Therefore,
our objective was to allow you, the reader, to see and participate in the evo-
lution of such a project in small incremental steps.

For that reason, this book is not your typical programming guide. Instead of
focusing on just the technological aspects of developing in ABAP, we will
study a fictional project so you can see how a project is developed. Each
chapter will represent a phase or layer of this project’s development, as well
as one or two new key ABAP technologies. If you're interested in delving
into these new technologies straightaway, you're welcome to skip to these
respective chapters; however, we, the authors, encourage you to read this
book in chronological order so that you'll have an opportunity to see the
entire narrative of this project play out.

Fictional Project

Throughout the book, we'll be using a single fictional project for our practice
scenario. This project takes place at a university, which is a long time SAP
customer who runs their business systems on SAP R/3. For over four years,
they've been running SAP R/3 4.6C and have used the Finance and Human
Resources modules of SAP R/3 extensively, in addition to custom developing
many modules of their own.

WWW.Sap-press.com 15

Introduction

This university is in the middle of a typical upgrade cycle. They have begun
the process of updating their SAP R/3 4.6C system to SAP ERP 6.0 (formerly
named mySAP ERP 2005). SAP ERP 6.0 will run on top of SAP NetWeaver —
specifically SAP NetWeaver 7.0 (formerly named SAP NetWeaver 2004s).
They are also in the process of implementing the SAP NetWeaver Portal, as
well as considering using SAP NetWeaver Process Integration (SAP
NetWeaver PI — formerly known as SAP NetWeaver Exchange Infrastruc-
ture or SAP XI) and SAP NetWeaver Master Data Management (SAP
NetWeaver MDM) in the near future.

This university has a small but strong IT team. Our story will focus on Russel,
the lead developer of the IT team at this university. Russel has many years of
experience in ABAP development to support the university's systems. Like
many developers, he reads about the latest ABAP development technologies
and techniques, but is somewhat constrained by the release level of the uni-
versity's R/3 system. Consequently, he feels that his development skills are
not up to date; for example, he has done very little ABAP Object-Oriented
(ABAP OO) programming and has virtually no web-based development. Still,
Russel is quite excited about the future upgrade to SAP ERP 6.0. He sees this
as an opportunity to update his skills and learn about the newest ABAP
development techniques.

Little does Russel know that he is about to get a crash course in ABAP devel-
opment on SAP NetWeaver 7.0. In addition to the upgrade activities, the uni-
versity is just beginning to offer a new distance learning curriculum. Like
new offerings at many universities, this distance learning curriculum will
offer online versions of many courses for people looking to complete their
degrees, or take part in continuing education without disrupting their cur-
rent career.

In support of this new curriculum, the university realizes that it will need sig-
nificant new custom development. Their ERP system will house this develop-
ment and ABAP will be the language in which the system is developed. This
project will enable Russel to build the data access, business logic, and user
interface aspects of this new system. This project will also be the first time
that Russel will build something that entails enterprise service-oriented archi-
tecture (enterprise SOA).

Please note again that the context for the project that we're going to study
throughout this book is fictional. It does not feature an actual university or
SAP customer. The characters that we will meet, like Russel, are not real peo-
ple; however Russel's experiences and reactions to events are based on our

16 WWW.Sap-press.com

Introduction

(i.e., the authors) experiences, and hopefully will touch a familiar chord with

many of you.

Structure of the Book

The structure of this book reflects the workflow of the development project.
The first half of the book focuses on creating the data and application logic
layers and then service-enabling them. The second half of the book focuses
on creating the user interface layers.

>

Chapter 1: Workbench Tools and Package Hierarchy

Before we begin our project, we will review some of the changes and
enhancements to the ABAP Workbench. In this chapter, we will look at
the new ABAP Editor, the Refactoring Assistant, the new development
tools perspectives in transaction SE80, and the new debugger. Lastly, we
will create the packages and package hierarchies for the project.

Chapter 2: Data Dictionary Objects

In this chapter, we will model the data relationships and build the corre-
sponding Data Dictionary objects. We'll study the tools for generating
table maintenance, creating lock objects, and utilizing foreign keys. We'll
also explore the new technology of strings and binary strings within trans-
parent tables.

Chapter 3: Data Persistence Layer

In this chapter, we'll build the logic that controls the persistence of appli-
cation data. We'll start by generating persistent object classes for the
underlying data dictionary tables created in Chapter 2. Then, we'll build a
set of business object classes to hide the inner technical details of the per-
sistent objects. In addition to the new technology of Persistent Objects,
we'll show you how to use ZIP compression on large strings.

Chapter 4: Consuming a Web Service
Not all project data will originate from one centralized system. For exam-
ple, in the sample application, some data will be stored in a legacy system
and accessed remotely via Web Services. In this chapter, we will examine
the process for generating a Web Service proxy object and integrating this
proxy into the data persistence layer.

Chapter 5: Shared Memory Objects
After some analysis, it will become apparent that the sample application
has some static data that will be accessed repeatedly. In this chapter, we

WWW.Sap-press.com 17

Introduction

18

will describe how you can provide the best performance by structuring
the data access for this type of data into an ABAP Shared Memory Object.

Chapter 6: Model Class

In this chapter, we will begin to implement the core application logic,
which is implemented as a Model Class. This same class will later be used
as the business logic layer of all the UI technology examples. This chapter
focuses primarily on object-oriented design patterns while introducing
techniques for sending email and manipulating XML.

Chapter 7: ABAP and SAP NetWeaver Master Data Management

This is the first of our “What-If" chapters. Here, we look at an alternative
approach to the project where our master data is modeled and stored in
SAP NetWeaver Master Data Management, instead of the local Data Dic-
tionary. This chapter will focus on how we would alter the data persis-
tence layer to read this data via the SAP NetWeaver MDM ABAP applica-
tion programming interface instead of directly from the local database.

Chapter 8: ABAP Unit

Before building any additional objects on top of the existing application
logic, this is a good point in the project to unit test what has been com-
pleted. In this chapter, we'll look at the built-in unit test tool, ABAP Unit,
and examine how unit test classes can be integrated directly into the
model class.

Chapter 9: Exposing a Model as a Web Service

Not all the logic from the sample model class will be exposed via a user
interface. Instead, some of the data was designed to be exposed as a Web
Service so that it can be accessible to external systems as well. In this chap-
ter, we'll examine the Inside-Out approach for generating Web Services.

Chapter 10: Exposing a Model as a Web Service Using SAP NetWeaver
Process Integration

This is the second of the two “What-If" chapters. In the previous chapter, we
looked at the Inside-Out approach of generating Web Services via remote
enabled function modules. In this chapter, we'll look at the world of Enter-
prise Service Modeling. We'll show you how the same logic could be mod-
eled in SAP NetWeaver Process Integration and then implemented as a
server proxy in ABAP using the Outside-In approach.

Chapter 11: Classic Dynpro UI/ALV Object Model

In this chapter, we turn our attention to user interface logic. In the sample
application requirements, there are a group of internal users who are full
time SAP GUI users and who need powerful reporting tools. Therefore,

Www.sap-press.com

Introduction

we'll learn how to build a classic Dynpro screen on top of the Model View
Controller, which uses the ALV Object Model for its reporting output.

Chapter 12: Web Dynpro ABAP

Since most of the sample application's users are not SAP GUI users, we'll
look at how you can build a Web Dynpro user interface for these users.
This chapter will focus on real world Web Dynpro applications that con-
tain multiple component usages, ALV integration, and table popins.

Chapter 13: Business Server Pages

The next user interface use case is for an Internet-facing application. This
user interface needs to be highly customized and stateless for scalability.
Therefore, in this chapter, we will use Business Server Pages in order to
show the flexibility they provide for highly customized style sheets and
AJAX integration.

Chapter 14: Adobe Forms

Adobe Forms technology offers an interesting paper-like alternative user
interface. In this chapter, we'll look at each of the major types of Adobe
Forms — print forms, online interactive forms, and offline interactive
forms.

Chapter 15: SAP NetWeaver Portal

Although we have focused on ABAP as the primary development environ-
ment until now, it is also important to see how some of the SAP
NetWeaver Portal technologies can be used with the best aspects of ABAP.
In this chapter, we'll explore how to wrap each of our user interface exam-
ples in iViews within the SAP NetWeaver Portal and how portal eventing
can be used for cross iView communication. We'll also look at how we can
use SAP NetWeaver Visual Composer to build code-free applications that
consume ABAP services.

Chapter 16: RSS Feed Using an ICF Service Node
In this chapter, we'll examine how Internet Communication Framework
Service Nodes can be combined with XML processing in ABAP to produce
interesting Web 2.0 type projects. As the final example of the book, we'll
implement an RSS Feed using these technologies.

Chapter 17: Closing
In the final chapter, we will look back on the completed project and
review the most important points of what has been discussed.

WWW.Sap-press.com 19

Introduction

Prerequisites

Whether you are relatively new to ABAP development or an experienced
veteran, there is something in this text for everyone. We do, however,
assume that the reader is already familiar with the ABAP Workbench and has
some development experience in ABAP as of the 4.x release level. We will
primarily focus on new techniques and tools that were introduced in the 6.x
and higher releases.

The state of the ABAP development environment described in this book is
SAP NetWeaver 7.0 SPS10. As SAP ERP 6.0 has been announced to be the
primary release of ERP for customers through 2010, SAP expects this to
become the “go-to" ERP release for many years to come. Therefore, capabil-
ities of ABAP in SAP NetWeaver 7.0 will likely become the base-line technol-
ogy level for most customer development as well.

If you don't already have access to a SAP NetWeaver 7.0 system, you can
always download the free trial edition from the SAP Developer Network
(https://www.sdn.sap.com/irj/sdn/downloads). This trial software has a full
ABAP development environment, enabling you to recreate nearly all the
examples contained within this book.

To help you follow along with the project as it unfolds in this book, we have
also provided you with the source code for all examples in the book, as well
as many supporting objects that are not discussed in detail on the accompa-
nying CD. This should help to facilitate your skipping certain chapters if you
want, without having to forego the prerequisite objects.

The source code on the CD is available in several different formats:

» First, there is a transport file. This is the simplest way to import all the
development objects that are discussed in this book in their correct pack-
ages.

> Not all developers have the necessary security to import a transport file.
For this reason, we have also included many of the development objects
in SAPlink format (the open source XML based mechanism for exchanging
ABAP development objects) and plain text files.

For complete instructions on how to work with each of these import for-
mats, see the ReadMe.pdf file in the root directory of the CD or Appendix A.

In case you were wondering, please note that we won't forget about older
releases just because our primary focus is on SAP NetWeaver 7.0. The tech-
nologies that we'll discuss were primarily released since SAP R/3 4.6C. As we

20 WWww.sap-press.com

Introduction

introduce each technology, we will try to indicate in which release it was
first introduced, and, what differences, if any, there are between the
releases.

As of SAP NetWeaver 7.0, SAP's ABAP foundation developers have not
stopped innovating around the ABAP environment. As you read this book,
dedicated teams are currently working on additional features and powerful
new functions for the ABAP development environment. We will point out
these anticipated features throughout the book; however they will simply be
identified with the notation “Future Functionality.”

With the direction of SAP ERP 6.0, SAP NetWeaver 7.0 will be an established
release for many years to come. Therefore, some of this future functionality
might find its way into SAP NetWeaver 7.0 via backports of the functionality
delivered with support packages. Other new features may be too extensive
to deliver in this way, and therefore be postponed until the next major
release of SAP NetWeaver, or some other, as yet undetermined, delivery
mechanism.

Acknowledgments

I would like to thank my wife, Shonna, for her love and support during the
entire project, and for understanding how important this project was to me.
Additionally, I would like to thank my kids, Kearston and Gavin, for their
unconditional love and understanding while Daddy was working. Thanks for
putting up with the laptop on the table during dinner and the shortened play
time. Without my family's support, the past few months would have been
much more difficult.

Thanks to my parents, for giving me the necessary foundation that enabled
me to be successful in life. Thanks to my sister, Angie, for her inspiration and
support, which gave me the “can-do" attitude that this project required.

I would also like to thank our editor, Stefan Proksch, for enabling me to
share my knowledge with the rest of the world. Thanks to the SDN commu-
nity for supplying great content that allowed me to learn directly from the
experts. Last but certainly not least, I would like to thank my co-author, Tho-
mas Jung, for the opportunity to work together on this project.

York (PA), May 2007
Rich Heilman

WWW.Sap-press.com 2

Introduction

I also must start off by thanking my wife, Shari. Without her support, I cer-
tainly couldn't have completed the work required to create this book. What
is even more amazing to me is that this time, she knew exactly what she was
getting herself into and yet, she still agreed to let me work on the project. As
with all accomplishments in my life, they simply would not have been pos-
sible without her love and support!

To my children, Megan and Madison, I owe my thanks as well. To them, it
probably seemed like Daddy was hardly around for the last few months,
since most nights and weekends he disappeared into his office.

The main character in the book, Russel, is named after my father. It is ironic that
when we are teenagers, we want nothing to do with our parents, but as we
grow older, we realize that the greatest compliment is hearing someone say
how much we are like our parents. Mom and Dad gave me so much while I was
growing up. I only wish they could be here today so that I could thank them.

To my friend, Brian McKellar, thanks for getting me started writing on SDN
and giving me the opportunity to learn from you during our first book
project together. I do and will carry those lessons with me in everything I do.

To the old gang at Kimball, there certainly is a little bit of each of you in this
book, as I learned so much from everyone that I have had the opportunity to
work with over the years.

To my new colleagues in SAP NetWeaver Product Management, for a virtual
team who only sees one another a few times a year, we are an amazingly
close-knit group. Everyone is absolutely wonderful to work with and so will-
ing to share his or her knowledge.

To my friend and coworker, Peter McNulty, even before I decided to come to
SAP, I figured if there were people this good in Product Management, then it
was certainly an organization of which I wanted to be a part. Peter is always
available to pitch ideas off of, and our discussions have influenced more than
a few sections of this book.

To our editor, Stefan, thanks so much for giving us the opportunity to create this
book. Your guidance and support have been instrumental in its completion.

Lastly, to my co-author, Rich, it has been a real pleasure working with you on
this project, and to think it all started because you accepted an invitation to
co-present with me at SDN Day at the SAP TechEd in Las Vegas in 2006.

Jasper (IN), May 2007
Thomas Jung

22 WWw.sap-press.com

Russel has finished the programming for the database access layer.
He now wants to optimize the read access to some of the data that is
read frequently, but not updated often. For this, he will turn to the
new shared memory objects technology that was introduced in SAP
NetWeaver 2004.

5 Shared Memory Objects

Shared memory objects are ABAP Object Instances, which can be stored in the
shared memory area on an application server. Instead of going to the data-
base to retrieve the required data, the data is accessed through the shared
memory, thereby providing faster data retrieval.

This shared memory area can be accessed by all of the ABAP programs run-
ning on that application server. Before the upgrade to SAP ERP 6.0, Russel
used the EXPORT/IMPORT statements with the SHARED BUFFER or SHARED MEMORY
extensions to access a similar memory buffer area. So what are the advan-
tages of using this new functionality?

» First, it is read access to shared memory without the need to copy it into
user session memory. Technically, an application does a remote attach to
the memory segment within shared memory and directly interacts with it.

» Secondly, the new shared memory technique is implemented through
ABAP Obijects; therefore, you are provided with robust tools to interact
with shared memory through code. Ultimately, you aren't just buffering
raw sets of data; you're also providing a shared mechanism to access the
business logic wrapped around this data.

» There are also dedicated tools for the monitoring and administration of
these shared areas and the objects within them. Transaction SHMM, for
example, provides tools to monitor the size and number of objects within
a shared area, as well as enabling administrators to force objects out of
memory if necessary.

WWW.Sap-press.com 143

5 | Shared Memory Objects

5.1 Getting Started

Russel has spent a considerable amount of time developing the database
access layer for this project and wants to ensure that performance is at an
optimal level. He decides to leverage the shared memory objects functional-
ity to increase performance when accessing some of the data in the database.

To use this feature of the ABAP runtime environment, Russel will have to
create several new types of objects. Shared memory objects are implemented
in two parts — the shared object root and area classes.

» The root class is the definition of the object that will be stored in shared
memory. An instance (or multiple instances) of this class will reside in
shared memory. Therefore this class's attributes should represent the data
that you want cached and the methods of the class are the way that you
access this data.

» The shared memory area class, on the other hand, will be a generated
class. It abstracts a section of shared memory that is set aside for one or
more instances of a particular root class. The methods of this area class
provide the tools to attach to the shared memory area in order to read or
manipulate it. The sole purpose of the area class is to return instances of
the root class.

5.1.1 Area Root Class Creation

Russel decides that the 7CS_COURSE table would be a good candidate to create
a shared memory object. Shared memory objects should primarily be used
for objects that are read often, but updated infrequently. This is due to the
locking mechanism that is used by shared objects. Although having multiple
read locks across separate user sessions is possible and is the norm, any form
of change lock is exclusive (i.e., it doesn't even allow parallel read locks on
the same area instance).

This does make ZCS_COURSE a good fit. New courses are rarely created or
changed during the school year. All updates are done all at once, before plan-
ning for the next semester begins. Technically, this means that this table will
have frequent read accesses by students and teachers concurrently, but the
data will rarely change.

Russel's first step in implementing a shared memory object to represent ZCS_
COURSE is to create the area root class. This class implements the setter and
getter methods, which are used to access the data to be stored in the shared

144 WWW.Sap-press.com

Getting Started

memory area. It could also include business logic that further manipulates
the data during access operations. For instance, it might include calculations,
the results of which could also be stored in shared memory. This is where the
value of the shared memory object can extend well beyond the scope of just
the buffering of data stored within the database.

Russel creates the class 7CL_CS_COURSE_SHMO_ROOT and assigns it to the 7CS_
DDIC package using transaction code SE80 (see Figure 5.1).

||I70reate Class ZCL_CS5_COURSE_SHMO B
Class ZGL_CS_COURSE_SHMO_RDOT [A
Description University Course Systermn - Shared ..
Instantiation Public H]

Class Type

® Usual ABAP Class

O Exception Class
[Cwiith Message Class

C Persistent class

O Test Class (ABAP Unify

Final
[Only dodeled

Figure 5.1 Root Class Creation

Russel then sets the Shared Memory-Enabled checkbox on the Properties tab
(see Figure 5.2). This tells the system that the class is eligible to be used as a
root class for a shared memory object.

The idea of using shared memory objects is to store data in memory, which
can be used at runtime. Therefore, Russel needs to add an attribute to this
class that will hold the data retrieved from the 7CS_COURSE database table.

Although it is technically possible to create public attributes of the root class
that can be accessed directly from an instance of the class, Russel wants to
follow good object-oriented designs and encapsulate all of his attribute
accesses within methods. This gives him more control in case he wants to
embed other operations within an access to this attribute. Therefore he
defines the attribute as a Private Instance attribute (see Figure 5.3).

WWW.Sap-press.com 145

5 | Shared Memory Objects

Class Interface [ZCL_C5_COURSE_SHMO_ROOT ||mp|eme’|

|A Superclass ||L(>) Undo inheritance ||“1l* Change Inherit

Description |Uni\rersity Course System - Course Shared Memory ..
Instantiation Puhblic]
Final

General Data -

[Released internally

Fixed point arithmetic Unicode checks active

..}u-'lessage.Class | |

Program status | |
Category | General Object Type H]
Package [205_DDIC |
Original Language |E |
Created [aBAP_DEY | [@1/30/2007|
Lastchange [ABAP_DEV | [01/30/2007]

Figure 5.2 Root Class Properties

Class Interface |ZCL_C5_COURSE_SHMO_ROOT Implement|

BlE=] [EE] (Y= &) [0
Aftribute Level Vizib. |Re.. |Typ.. [Associated Type
COURSE_LIST Instance . |Private| [[Tvpe [ZC5_COURSES_TT]

Figure 5.3 Define Attribute

The class now requires methods that can be used to populate or read this
attribute. To start, Russel needs a SET method, which will be used to fill the
COURSE_LIST attribute with all records in the database table. This method
should be defined as a Public Instance method (see Figure 5.4).

Class Intetface |Z0L_C5_COURSE_SHMO_ROOT [implams)

Methods

[@ Parameters] B Exceptions | =]

Method Level WisihilitgM... |Description
ISET_COURSE_LIST Instance.. Public Set Course List

Figure 5.4 Define SET_COURSE_LIST Method

146

WWW.Sap-press.com

Getting Started | 51

In the implementation of the SET_COURSE_LIST method, Russel leverages the
persistent object for database table ZCS_COURSE to fill the instance attribute
COURSE_LIST. As shown in Listing 5.1, Russel is simply borrowing some of
the persistent object code from the method READ_ALL_COURSES of the class
ZCL_CS_COURSE that he wrote in Chapter 3. He then loops through the objects
and populates the returning parameter with the values.

METHOD set_course_list.

DATA: T1_agent TYPE REF TO zca_cs_course_pers,
1_pers_obj TYPE REF TO zcl_cs_course_pers,
1_objects TYPE osreftab.

FIELD-SYMBOLS: <wa_object> LIKE LINE OF 1_objects,

<wa_course> LIKE LINE OF course_list.

DATA: query_manager TYPE REF TO if_os_query_manager,

query TYPE REF TO if_os_query.

TRY.
1_agent = zca_cs_course_pers=>agent.
query_manager = cl_os_system=>get_query_manager().
query = query_manager->create_query().

1_objects =

1_agent->if_os_ca_persistency~get_persistent_by_query(

i_query = query).

IF LINES(C T_objects) = 0.

RAISE EXCEPTION TYPE zcx_cs_course

EXPORTING
textid = zcx_cs_course=>bad_query.

ENDIF.

LOOP AT 1_objects ASSIGNING <wa_object>.
1_pers_obj 7= <wa_object>.
APPEND INITIAL LINE TO course_list
ASSIGNING <wa_course>.
<wa_course>-syllabi = 1_pers_obj->get_syllabi().
<wa_course>-cost = 1_pers_obj->get_cost().
<wa_course>-course_id = 1_pers_obj->get_course_id().
{wa_course>-course_schedule =
1_pers_obj->get_course_schedule().
{wa_course>-course_sdesc =
1_pers_obj->get_course_sdesc().
{wa_course>-course_year =
1_pers_obj->get_course_year().
<wa_course>-credit_hrs = 1_pers_obj->get_credit_hrs().

WWW.Sap-press.com 147

5 | Shared Memory Objects

{wa_course>-currency = l_pers_obj->get_currency().
<wa_course>-deletion_flag =
1_pers_obj->get_deletion_flag().
<wa_course>-description =
1_pers_obj->get_description().
<wa_course>-end_time = 1_pers_obj->get_end_time().
<wa_course>-faculty_id = 1_pers_obj->get_faculty_id().
{wa_course>-major = 1_pers_obj->get_major().
{wa_course>-semester = 1_pers_obj->get_semester().
<wa_course>-start_time = 1_pers_obj->get_start_time().
<wa_course>-student_limit =
1_pers_obj->get_student_Timit().
ENDLOOP.
ENDTRY.
ENDMETHQOD.

Listing 5.1 SET_COURSE_LIST Method Implementation

Russel also needs to define the GET methods, which will be used to retrieve
the data. First, Russel needs a GET method to retrieve all the courses. The sig-
nature of this method will contain a RETURNING parameter, which is defined
as the table type ZCS_COURSES_TT (see Figure 5.5 and Figure 5.6).

Class Interface |2CL_C5_COURSE_SHMO_ROOT | |mp|emeni.
Methods

o Paramaters| B Exceptions || 1= |B]@B]<2] [FiE

method Level Wisibility |M._. |Description
SET_COURSE_LIST Instance.. [Public Set Course List
GET_COURSE[LIST Instance.. Public Get Course List

Figure 5.5 Define GET_COURSE_LIST Method

Class Interface |ZCL_CS_GOURSE_SHMO_ROOT |mp|ememeJ
Method parameters |GET COURSE_LIST

& Methods | & Exceptions 1] [E] E ENEERE

Parametar Type P.. 0. |Typi.. JAssaciated Type
RE_COURSE_LIST Returning [] [Twpe [CS_COURSES_TT

Figure 5.6 Define GET_COURSE_LIST Method Signature

148 WWW.Sap-press.com

Getting Started

Of course as soon as Russel uses a returning parameter, he negates one of the
advantages of the shared memory object, namely, the copy free read. Imag-
ine if you had a very large table that could either be exported to shared mem-
ory or placed in a shared memory object. In this example, you want to sort
the internal table and then read a subset of the records.

With an internal table that was simply exported to shared memory, the
entire table would have to be imported before any operations could be per-
formed on it. This entails making a copy of the entire internal table and plac-
ing it into the internal session of the running application.

With a shared memory object, however, all of this logic could be placed
within the shared object root class and only the resulting few records would
be returned. This prevents you from having to copy anything, but the result
set, out of shared memory and into the internal session.

In the shared object root class that Russel is building, he needs to support
both kinds of accesses. He will eventually build a method that returns a sin-
gle record, but some applications also need access to the entire course listing.
For these applications, it doesn't make sense to keep a constant read attach-
ment to the shared object instance, therefore, he decides to return a copy of
the entire internal table attribute. Returning parameters are always marked
as Pass by Value (see third column in Figure 5.6), making this copy operation
happen automatically.

The GET_COURSE_LIST has a very simple implementation. Russel only needs
to pass the instance attribute COURSE_LIST to the RETURNING parameter RE_
COURSE_LIST (see Listing 5.2).

METHOD get_course_list.
re_course_list = course_list.
ENDMETHOD .

Listing 5.2 GET_COURSE_LIST Method Implementation

Additionally Russel needs a GET method, which will be used to get a single
course record. By clicking on the Parameters button, the signature of the
method is displayed. The signature of this method contains an IMPORTING
parameter for the COURSE_ID, which will be used to select the specific course.
The second parameter is a RETURNING parameter, which will be used to return
the course data. This RETURNING parameter is typed like 2CS_COURSE (see Fig-
ure 5.7 and Figure 5.8).

WWW.Sap-press.com 149

5 | Shared Memory Objects

Class Interface [2CL_C5_COURSE_SHMO_ROOT [Implemé
et i ' Friends firibute Methads

o Parameters"[ﬂ Exceptions"@ EE|

Method Level |Visi. M. |Description
SET_COURSE_LIST Insta. Pub.. Set Course List
GET_COURSE_LIST Insta.. Fub.. Get Course List
GET_CDURSE Insta. Pub.. Get Course

Figure 5.7 Define GET_COURSE Method

Class Interface |ZCL_CS_CDURSE_SHMD_RDDT | Implerm

Methods

Method parameters |GET_CDURSE

|4? Methods ||[5l Exceptions"@l . ..I ! %Illﬁl
Farameter Type F... |0 |Typi... jAssociated Type
COURSE_ID mporting [| (] [Type ZC5_COURSE-COURSE_ID
COURSE Returning [l Type |[ZCS_COURSE

Figure 5.8 Define GET_COURSE Method Signature

Again, the implementation for the GET_COURSE method is fairly simple. A sim-
ple read statement will read the COURSE_LIST attribute and return the corre-
sponding row based on the IMPORTING parameter COURSE_ID (see Listing 5.3).

METHOD get_course.
READ TABLE course_list INTO course
WITH KEY course_id = course_id.
ENDMETHOD.

Listing 5.3 GET_COURSE Method Implementation

5.1.2 Defining the Shared Memory Area

Russel now needs to create the shared memory area. The transaction code
SHMA allows you to create the area and define its properties. When the
shared memory area is created, a global class with the same name as the area
is created automatically. Therefore, we recommend that you use the stan-
dard naming convention for classes, CL_* or ZCL_*, to name the memory
area. This shared memory area class inherits from the class CL_SHM_AREA,
which is a sub-class of CL_ABAP_MEMORY_AREA, giving it all the necessary meth-
ods for accessing area root class.

Russel uses transaction SHMA to create the shared memory area. The subse-
quent screen allows him to specify the properties of the area as well as the

150 WWW.Sap-press.com

Getting Started | 51

root class that this area will be defined for (see Figure 5.9). For now Russel
will leave the default properties that were suggested, no limits on the area
size, lifetime, or number of versions. Later you will see how he can use some
of these properties to set up automatic initialization of his shared object on
the first read request.

Area
Mame ZCL_C5_COURSE_SHMO
Description University Course System - Course

Basic Properties

Root Class |ZCL_CS_CUURSE_SHHU_RUUT|
[Client-Specific Area
[Aut. AreaStructuring
[Transactional Area

Fixed Propetties
[v]with Versioning

Figure 5.9 Area Properties

Now that the area class has been generated, Russel can look at the public
methods that he will use to access the shared memory object (see Figure
5.10). The ATTACH methods will return area handles, which are instances of
the area class.

Class Interface [ZCL_GS_COURSE_SHHD | |mp|emen{i
-] Methods

o Parameters" U Exceptions ||E @
Method Leyvel |Visi. |M... |Description

_HAS_ACTIVE_PROPERTIES Insta. Pro..
CLASS_CONSTRUCTOR Stati. Pub.. @3 CLASS COMNSTRUCTOR
GET_GEMERATOR_VERSION Stati. Pub.. GCiuery Generator Version
STTACH_FOR_READ: Stati. Pub.. Requesta Read Lock
LTTACH_FOR_WRITE Stati. Pub Reqguest a Write Lock
ATTACH_FOR_UPDATE Stati. Pub.. Regquesta Change Lock
DETACH_AREA Stati. Pub.. Release all locks an all i
INVALIDATE _IWSTANCE Stati. Pub.. Active version of one insts
INVALIDATE_AREA Stati. Pub.. Active versions of all insta
FREE_INSTANCE Stati. Pub.. Deletion of an Instance
FREE_LRER Stati. Pub.. Delete all instances
GET_IMSTAMCE_INFOS Stati. Pub.. Returns the names of all
BUILD Stati . |Pub.. Direct Call of Area Constr
SET_ROOT Insta. Pub.. Sets Root Objects

Figure 5.10 Methods of the Area Class

WWW.Sap-press.com 151

5 | Shared Memory Objects

For example, the ATTACH_FOR_READ method will return an area handle, which
can then be used to read the shared memory area. Similarly, the ATTACH_FOR_
WRITE method will return an area handle, which will allow you to write to
the shared memory area. The DETACH_AREA method removes the binding
between the area class and the area handle.

5.1.3 Testing the Shared Memory Object

Russel wants to see the shared memory object in action before trying to use
it directly in the rest of the course system. He decides to develop several
short test programs to get a feel for how it all works. The first program will
be a test write program, which will create the area instance of the area root
class and place it into the shared memory area (see Listing 5.4).

REPORT zcs_course_shmo_write.

DATA: course_handle TYPE REF TO zcl_cs_course_shmo,
course_root TYPE REF TO zcl_cs_course_shmo_root.

TRY.
course_handle = zcl_cs_course_shmo=>attach_for_write().
CREATE OBJECT course_root AREA HANDLE course_handle.
course_handle->set_root(course_root).
course_root->set_course_Tist().
course_handle->detach_commit().
CATCH cx_shm_attach_error.

ENDTRY.

Listing 5.4 Write Test Program

Notice that fairly normal conventions are used for creating the COURSE_ROOT
instance. Russel still uses the CREATE OBJECT syntax, but now with the new
addition AREA HANDLE. These extra statements direct the ABAP runtime to

instantiate the root class within shared memory instead of the internal ses-
sion memory.

Russel writes a second program to test the reading of the data from the
shared memory object (see Listing 5.5). This test program will allow Russel
to ensure that the GET_COURSE_LIST method and the GET_COURSE method
work properly. Before Russel runs this program, he must run the write pro-
gram to load the memory area. Otherwise, he'll get an ABAP short dump
when trying to access an unloaded memory area.

152 WWW.Sap-press.com

Getting Started

REPORT zcs_course_shmo_read.

DATA: course_handle TYPE REF TO zcl_cs_course_shmo.
DATA: gt_courses TYPE zcs_courses_tt.
DATA: gs_courses TYPE zcs_course.

PARAMETERS: p_radl RADIOBUTTON GROUP grpl DEFAULT 'X'.
PARAMETERS: p_rad2 RADIOBUTTON GROUP grpl.
PARAMETERS: p_csid TYPE zcs_course-course_id.

AT SELECTION-SCREEN.
IF p_rad2 = 'X'
AND p_csid IS INITIAL.
MESSAGE e001(00) WITH 'Enter a course id'.
ENDIF.

START-OF-SELECTION.
TRY.

course_handle = zcl_cs_course_shmo=>attach_for_read().
CATCH cx_shm_attach_error.

ENDTRY.
CASE p_radl.
WHEN "X".

gt_courses = course_handle->root->get_course_Tlist().
WHEN OTHERS.
gs_courses = course_handle->root->get_course(p_csid).
APPEND gs_courses TO gt_courses.
ENDCASE.

course_handle->detach().

LOOP AT gt_courses INTO gs_courses.
WRITE:/ gs_courses-course_id,

gs_courses-course_sdesc+0(20),
gs_courses-faculty_id,
gs_courses-semester,
gs_courses-course_year,
gs_courses-major,
gs_courses-credit_hrs,
gs_courses-student_limit,
gs_courses-deletion_flag,
gs_courses-start_time,
gs_courses-end_time,

WWW.Sap-press.com 153

5 | Shared Memory Objects

gs_courses-course_schedule,
gs_courses-cost,
gs_courses-currency.

ENDLOOP.
Listing 5.5 Read Test Program

5.1.4 Shared Memory Monitor

The shared memory monitor provides an interface in which you can monitor
the area instances in the shared objects memory. The monitor allows you to
view areas, area instances, versions, and locks. Drill-down functionality
allows you to drill into these overviews via double-clicking on them.

Russel goes to transaction SHMM to check that the data has been written to
the shared memory area by his test applications. He can see that there is one
instance of the area class stored in the shared memory area zZCL_CS_COURSE_
SHMO (see Figure 5.11). He can also see memory usage, number of instances,
number of versions, and the status breakdown of the versions.

BEIEEE @]) view [Dverview '
Area [instan..Jver..| #E[W] 0] & [@ |occup. (6]
ZCL_C5_COURSE_SHMO 1 1 @ © 1 B @ 16,232

Figure 5.11 Shared Memory Monitor — Areas

If the COURSE_LIST attribute of the area root class was defined as Public, Rus-
sel could also see the data that is currently stored in the shared memory
object. Private attributes, however, are not visible. This is also where he can
delete shared memory areas.

For developers, the ability to delete a shared memory area within this trans-
action is probably one of the shared memory monitor's most useful func-
tions. If you make any changes to the coding of the root class and reactivate
it, the class will be given a new generation timestamp. The generation times-
tamp of the root class definition in the database is checked by the area class,
whenever an access is made.

Therefore, if you make any changes to the root class after it has been stored
within a shared area, this will cause an invalid version exception to be
thrown every time you try to access the area. After each change to the root

154 WWW.Sap-press.com

Automatic Preloading | 5.2

class, you will have to delete any and all versions of the shared memory area
before you can test your changes.

5.2 Automatic Preloading

Russel has reviewed what he has learned so far about shared memory objects
and realizes that there are some weaknesses in his test applications. For
example, it could be problematic if the shared memory area was read before
it had been instantiated via a write operation. In other words, reading an
unloaded shared memory area will only result in a short dump.

This can occur after the application server has been shut down and restarted.
The shared memory areas are all cleared at this time. For the best reliability
of his applications, Russel needs to find a way to preload the memory area at
the time of the first read. Fortunately, the shared memory object implemen-
tation that SAP supplies has just the optional functionality he needs.

5.2.1 Adding the Interface

In order to take advantage of this functionality, he first must add the inter-
face, IF_SHM_BUILD_INSTANCE, to the area root class zCL_CS_COURSE_SHMO_
ROOT. Once the interface is added, the BUILD method appears in the Methods
tab (see Figure 5.12). This static method is automatically fired if any of the
ATTACH methods of the area class are called and the shared memory area has
not been loaded.

Class Interface ZCL_C5_COURSE_SHMO_ROOT | imptem
Properies . Interfaces |, Friends |, Affributes

[o Parameters|| & E}(ceptions"@ EIEI@H EIEER

Method [Level [wisi.[M... [Description

FIF GHI_BUILD INGTANGES,

BUILD Static . Pub.. Gebietskonstruktor
SET_COURSE_LIST Instanc. Pub.. Set Course List
GET_COURSE_LIST Instanc.. Pub.. Get Course List
GET_COURSE Instanc.. Pub.. Get Course

Figure 5.12 Build Method
Now Russel can copy and paste the code, which he wrote in the write test

program ZCS_COURSE_SHMO_WRITE into the BUILD method (see Listing 5.6).
This not only sets up the technical initialization of the root instance within

WWW.Sap-press.com 155

5 | Shared Memory Objects

the area, but also provides an opportunity to preload all the data from the
database via the call to the SET_COURSE_LIST method.

METHOD if_shm_build_instance~build.

DATA: course_handle TYPE REF TO zcl_cs_course_shmo,
course_root TYPE REF TO zcl_cs_course_shmo_root,
excep TYPE REF TO cx_root.

TRY.
course_handle = zcl_cs_course_shmo=>attach_for_write().
CATCH cx_shm_error INTO excep.
RAISE EXCEPTION TYPE cx_shm_build_failed
EXPORTING previous = excep.
ENDTRY.

TRY.
CREATE OBJECT course_root AREA HANDLE course_handle.
course_handle->set_root(course_root).
course_root->set_course_list().
course_handle->detach_commit().

CATCH cx_shm_error INTO excep.
RAISE EXCEPTION TYPE cx_shm_build_failed
EXPORTING previous = excep.
ENDTRY.

IF invocation_mode = cl_shm_area=>invocation_mode_auto_build.
CALL FUNCTION 'DB_COMMIT'.
ENDIF.

ENDMETHOD.
Listing 5.6 Build Method Implementation

Simply adding the BUILD method is not enough to have it triggered by the
area class. Russel must return to transaction SHMM and adjust the properties
on his area. He needs to set the flag for Automatic Area Structuring and the
Autostart value for Area Structure.

Also he has to define the Constructor Class. This is the class where he imple-
mented the BUILD method. Notice that no assumption is made that the BUILD
method will be part of the root class. That is a common approach, but the
BUILD method can actually belong to any global class.

156 WWW.Sap-press.com

Implementing into the Business Object Layer

5.2.2 Modifying the Read Program

Finally Russel needs to modify the read test program ZCS_COURSE_SHMO_READ.
Although the static BUILD method of the root class will be called automati-
cally now, it does so asynchronously.

Instead of simply calling the method ATTACH_FOR_READ, Russel needs to take
into account the asynchronous BUILD method and modify the program so
that it waits for the shared memory area to be loaded by the BUILD method.
Then, he needs to call the ATTACH_FOR_READ method again. The BUILD method
is actually fired in a different work process, which accounts for needing the
WAIT statement (see Listing 5.7).

START-OF-SELECTION.
TRY.
course_handle = zcl_cs_course_shmo=>attach_for_read().
CATCH cx_shm_no_active_version.
WAIT UP TO 1 SECONDS.
course_handle = zcl_cs_course_shmo=>attach_for_read().
ENDTRY.

Listing 5.7 Read Program Modification

Russel can now use transaction SHMM to delete any shared memory areas
that may still exist. Since Russel has modified the area root class 7CL_CS_
COURSE_SHMO_RO0OT, he must delete any existing shared memory areas for this
root. If this isn't done, Russel will get an ABAP runtime exception stating an
inconsistency is present.

Russel can now run the read program directly instead of having to first run
the write program. The output proves that the preloading of the shared
memory object is working correctly.

5.3 Implementing into the Business Object Layer

Russel has finally completed the programming required for the shared mem-
ory object and has tested that it works correctly. The next step is to imple-
ment this shared memory object in the business object layer of the course
system.

The main goal is to swap out the persistent object code and replace it with
the shared memory object code. When the exchange is complete, the
changes should have no affect on any developments that use the business

WWW.Sap-press.com 157

5 | Shared Memory Objects

object. This allows us to hide any complexities of using the shared memory
object from the application logic. Activities like having to wait for the asyn-
chronous BUILD method to complete will all be handled within the business
object class now.

Example Source Code

It is important for you to understand that normally Russel (i.e., the developer)
would be directly modifying the business object class ZCL_CS_COURSE to imple-
ment the shared memory object. In order to illustrate how the business objects
change as we delve further into the development of the examples that accompany
this book, we will show you how to implement the shared memory object in a
copy of the ZCL_CS_COURSE business object class.

For a complete example of all of the changes that you need to make to the business
object class ZCL_CS_COURSE, see the class ZCL_CS_COURSE_SHM_ACCESS.

5.3.1 Developing a Test Program

Russel wants to develop a simple program to test data retrieval using the
business object class. This simple report program will retrieve all of the
courses and write the data out to a standard list display (see Listing 5.8).
Later he will use this same program to test the implementation of the shared
memory object for the course database.

REPORT zcs_course_obj_read.

DATA: gt_courses TYPE STANDARD TABLE OF zcs_course_att.
FIELD-SYMBOLS: <gs_courses> LIKE LINE OF gt_courses.

DATA: gt_courses_obj TYPE zcs_courses_thl.

FIELD-SYMBOLS: <gs_courses_obj> LIKE LINE OF gt_courses_obj.

START-OF-SELECTION.

gt_courses_obj = zcl_cs_course=>read_all_courses().
LOOP AT gt_courses_obj
ASSIGNING <gs_courses_obj>.
APPEND INITIAL LINE TO gt_courses
ASSIGNING <gs_courses>.
MOVE-CORRESPONDING
{gs_courses_obj>-course->course
TO <gs_courses>.
ENDLOOP.

LOOP AT gt_courses ASSIGNING <gs_courses>.

158 WWW.Sap-press.com

Implementing into the Business Object Layer | 5.3

WRITE:/ <gs_courses>-course_id,
{gs_courses>-course_sdesc+0(20),
{gs_courses>-faculty_id,
<{gs_courses>-semester,
{gs_courses>-course_year,
<{gs_courses>-major,
{gs_courses>-credit_hrs,
{gs_courses>-student_limit,
{gs_courses>-deletion_flag,
<{gs_courses>-start_time,
{gs_courses>-end_time,
{gs_courses>-course_schedule,
<{gs_courses>-cost,
{gs_courses>-currency.

ENDLOOP.
Listing 5.8 Course Object Test Program

5.3.2 Modifying the Business Object Class

Russel has proven that the current business object class 7CL_CS_COURSE
works well using the persistent object for the course database. To keep
things simple, we'll focus now on only those changes required for the READ_
ALL_COURSES method. Listing 5.9 shows that the code for the persistent
object has been removed, and the new code to retrieve the data from the
shared memory object has been inserted.

METHOD read_all_courses.

DATA: course_handle TYPE REF TO zcl_cs_course_shmo.
DATA: T1t_courses TYPE zcs_courses_tt.
FIELD-SYMBOLS: <1s_courses> LIKE LINE OF 1t_courses,
<wa_course> LIKE LINE OF r_courses.
TRY.
course_handle = zcl_cs_course_shmo=>attach_for_read().
CATCH cx_shm_no_active_version.
WAIT UP TO 1 SECONDS.
course_handle = zcl_cs_course_shmo=>attach_for_read().
ENDTRY .
1t_courses = course_handle->root->get_course_list().
course_handle->detach().

LOOP AT Tt_courses ASSIGNING <1s_courses>.

APPEND INITIAL LINE TO r_courses ASSIGNING <wa_course>.
{wa_course>-course_id = <ls_courses>-course_id.

WWW.Sap-press.com 159

5 | Shared Memory Objects

CREATE OBJECT <wa_course>-course
EXPORTING
i_course = <ls_courses>.
ENDLOOP.

ENDMETHOD.
Listing 5.9 READ_ALL_COURSES Method

Also notice that the variable being passed to the CREATE 0BJECT statement has
changed. Instead of passing the persistent object, Russel is now passing a flat
structure, which contains the course data. This means that the signature of the
CONSTRUCTOR method of the business object class must also be modified. The I_
COURSE parameter must be typed like ZCS_COURSE (see Figure 5.13). Because the
CONSTRUCTOR is private and only called via static factory methods, this sort of
change has no effect on the applications that are using the business object class.

Method parameters |EUNSTRUETDR
|4 Methods |5 Exceptions][TE] [ElE f
Parameter P.. |0, |Typing M.. |Associated ... m
1_GOURSE O O ryee Eos_couRse [=

Figure 5.13 Constructor Signature

The CONSTRUCTOR implementation has changed a bit as well. Since Russel is
now passing a flat structure to the I_COURSE parameter, the CONSTRUCTOR
must do something with this data. Russel has added a new private instance
attribute called SHMA_DATA. This attribute will hold the data that is passed
from the I_COURSE parameter (see Listing 5.10).

METHOD constructor.
me->shma_data = i_course.
me->course_preq_pers =
me->load_course_preqs(i_course-course_id).
me->map_shared_to_struc().
me->Toad_supporting_details().
ENDMETHQOD.

Listing 5.10 Constructor Modifications

Russel has also added a new method called MAP_SHARED_TO_STRUC that
replaces the mapping from the persistent object, and will be used to map the
data from the SHMA_DATA attribute to the COURSE attribute of the business
object (see Listing 5.11).

160 WWW.Sap-press.com

METHOD map_shared_to_struc.

course-course_id
course-course_sdesc
course-faculty_id
course-semester
course-course_year
course-major
course-credit_hrs
course-student_Timit
course-deletion_flag
course-start_time
course-end_time
course-course_schedule
course-cost
course-currency
course-description

Implementing into the Business Object Layer | 5.3

shma_data-course_id.
shma_data-course_sdesc.
shma_data-faculty_id.
shma_data-semester.
shma_data-course_year.
shma_data-major.
shma_data-credit_hrs.
shma_data-student_Timit.
shma_data-deletion_flag.
shma_data-start_time.
shma_data-end_time.
shma_data-course_schedule.
shma_data-cost.
shma_data-currency.
shma_data-description.

* Load faculty using business object class
TRY.
course-faculty =
zcl_cs_faculty=>read_faculty(course-faculty_id).
CATCH zcx_cs_faculty.
ENDTRY.
DATA 1_syllabi TYPE xstring.
1_syllabi = shma_data-syllabi.
DATA izip TYPE REF TO cl_abap_gzip.
IF 1_sylTabi IS NOT INITIAL.
CREATE OBJECT izip.
izip->decompress_text(EXPORTING gzip_in = 1_syllabi
IMPORTING text_out = course-syllabi).
ENDIF.
FIELD-SYMBOLS: <wa_pers> LIKE LINE OF course_preqg_pers,
<wa_preq> TYPE zcs_course_preqg_att.
LOOP AT course_preq_pers ASSIGNING <wa_pers>.
APPEND INITIAL LINE TO course-pre_req ASSIGNING <wa_preg>.
<wa_preqg>-preq_id = <wa_pers>-course_preq->get_preq_id().
ENDLOOP.
ENDMETHOD.

Listing 5.11 MAP_SHARED_TO_STRUC Method Implementation

161

WWW.Sap-press.com

5 | Shared Memory Objects

5.3.3 Testing the Changes

Now that Russel has completed the changes required to the business object
class, he can use the test program, which he created earlier to see whether
the data is being retrieved correctly. Again Russel would have directly mod-
ified the business object class ZCL_CS_COURSE, so there would be no changes
required to the test program to make it work. For our purposes, we have
implemented the changes in a copy of the business object class. Therefore,
the test program 7CS_COURSE_OBJ_READ must be slightly modified to use the
new business object class ZCL_COURSE_SHM_ACCESS.

Listing 5.12 shows that Russel is simply swapping out the table type used to
receive the objects from the business object class, and the static call to
method READ_ALL_COURSES.

REPORT zcs_course_obj_read.

DATA: gt_courses TYPE STANDARD TABLE OF zcs_course_att.
FIELD-SYMBOLS: <gs_courses> LIKE LINE OF gt_courses.

*DATA: gt_courses_obj TYPE zcs_courses_tbT.

DATA: gt_courses_obj TYPE zcs_courses_tbl_sma.
FIELD-SYMBOLS: <gs_courses_obj> LIKE LINE OF gt_courses_obj.

START-OF-SELECTION.
* gt_courses_obj = zcl_cs_course=>read_all_courses().

gt_courses_obj =
zcl_cs_course_shm_access=>read_all_courses().

Listing 5.12 Test Program Modifications

162 WWW.Sap-press.com

Index

A

ABAP Debugger 292, 341, 342

ABAP Dialog Screen Painter 33

ABAP Editor 28

ABAP exception 454

ABAP JavaScript (AJS) 357

ABAP kernel 34, 203

ABAP language syntax 30

ABAP Objects 143

ABAP Trial Version 469

ABAP Unit 18, 26, 221

ABAP Workbench 17

ABAP+J2EE instance 376

abstract class 76

abstract provider 207

abstraction 71, 169

Action 310

addition
FOR TESTING 222

Adobe 375

Adobe Document Services (ADS) 376-
380, 390, 392, 404, 405
user 379

Adobe Flex 304

Adobe Forms 19, 379, 381, 384, 390,
391, 395, 398, 422, 444

Adobe LifeCycle Designer 375, 381,
387, 398
Table Assistant 398

Adobe Reader 377, 393, 394

ADS — see Adobe Document Services
(ADS)

agent class 75

AJAX 19, 346, 356, 358, 361, 362, 443
Handler 359

AJS — see ABAP JavaScript (AJS)

allow.ip 206

ALV — see SAP List Viewer (ALV)

append 62

application component 252

archive 200

ASCII7 26

assigned role 421

assigning 278

assistance class 166, 304, 310, 322

asynchronous 263

Asynchronous JavaScript and XML
(AJAX) — see AJAX

attribute
code 201

authentication 134

authorization group 58

BAPI — see Business Application Pro-
gramming Interface (BAPI)

base class 75, 76

Basic Authentication 135, 379

Basic Authorization 238

Basis Support Package 30

BCS — see Business Communication Ser-
vices (BCS)

binary string 37, 187, 393

binary table 115

binding 319

bookmark 30

Browser Selection 28

BSP — see Business Server Pages (BSP)

buffer memory 56

buffering 54, 56
settings 52

Business Application Programming Inter-
face (BAPI) 433

Business Communication Services (BCS)
178, 182, 185-188

business object 101, 102, 128, 347

business object class 89, 95, 163, 168-
172,279

Business Server Pages (BSP) 27, 33, 164—
166, 303, 345, 403, 413, 416, 424-
427, 444, 449
BSP_UPDATE_MIMEREPOS 364
COMPILE_TIME_IS_VALID 369
controller 348, 353, 354
data binding 369
DO_AT_BEGINNING 371
element 366
element handler class 366

WWW.Sap-press.com 475

Index

extension 27,365, 425, 427, 428
extension element 165, 363
HTMLB Event Manager 373
model class 353

page attribute 429
PAGE->TO_STRING 360
portalEvent 427
RUNTIME_IS_VALID 370
server caching 361

server event 428

stateful 346

stateless 346

validator 369, 370

view 349

C

cardinality 321, 397

Cascading Style Sheets (CSS) 350, 352,
355, 360

casting 177, 215

central lock process 65

central master data hub 194

certificate 377

channel 457, 458

Chart View 436, 442

class
assistance class 166
CL_ABAP_GZIP 105
CL_ABAP_RANDOM 111
CL_ABAP_REGEX 190
CL_ABAP_ZIP 106
CL_BSP_CONTROLLER 354
CL_BSP_MIMES 386
CL_BSP_MODEL2 165
CL_CAM_ADDRESS_BCS 188
CL_GUI_ALV_GRID 282
CL_MDM_GENERIC_API 203, 207
CL_MIME_REPOSITORY_API 386
CL_SALV_COLUMN_TABLE 284
CL_SALV_DISPLAY_SETTINGS 285
CL_SALV_EVENTS _TABLE 291
CL_SALV_FUNCTIONS 282
CL_SALV_HIERSEQ TABLE 274
CL_SALV_LAYOUT 286
CL_SALV_SELECTIONS 289
CL_SALV_TABLE 274,279
CL_SALV_TREE 274
CL_SALV_WD_CONFIG_TABLE 323

CL_SAPUSER_BCS 188
CL_WD_COMPONENT_ASSISTANCE
166
CL_WD_DYNAMIC_TOOL 316
definition 184
Class Builder
Types tab 184
Class Type 73
class-based exception 89, 209
classic Dynpro 295, 422, 447
client dependent 53
client key 64
client proxy 121-124, 265
code
collapse 30
coloring 30
completion 31
page 180
sample 469
template 30
code-free environment 430
Collective Search Help 68
commit work 36
complex data type 61
complex type 259, 261
component 304, 309, 310, 331, 342
controller 320, 329
interface 329
INTERFACECONTROLLER 320
INTERFACECONTROLLER_USAGE 321
reuse 307, 310, 327, 331
SALV_WD_TABLE 307, 320
structure 38
usage 307,309, 320, 327-329
compression 105, 106
connection test 415
connector category 413
connector property 410
console hierarchy 200
constructor 94
container control 276
Content Administration 416
context 38, 316, 335, 336, 342
attribute 317, 318
element 337
mapping 321, 383
control flush 36
controller 300, 395
controller class 296, 299

476 WWW.Sap-press.com

controller context 395

cookies 138

CRUD methods (Create, Read, Update,
Delete) 90, 168

CSS — see Cascading Style Sheets (CSS)

customer modification 63

D

data base layout 44
data binding 317, 340
data browser 46, 60
data buffering 52
Data Dictionary 17, 46, 212
domain 47
object 43, 44
Table Type 98
Type 313
data element 47, 50
data model 46, 196, 200
data persistence layer 72
data relationship 45
Data Service 434
data table 61
data type 252, 253
xsd:decimal 258
xsd:string 255, 257, 258
database lock 347
deadlock 65
debugger 36
Debugger XML Viewer 37
Default Port 126
deletion operation 104
Delivery and Maintenance 57, 58
delivery class 51
dequeue 172
desktop 36
detail option
maxLength 255
development class 40
development coordination 41
dialog 27
popup 331
popup window 324
screen program 295
Dictionary Search Help 314
Direct Type Entry 184
Display Worklist 24
distributed development 71

Index

DIV tag 358

Document Object Model (DOM) 356
domain 48, 50

Drop Down List Box 48

Dynpro 19, 66, 67, 90

Dynpro Event 300

E

element set 336
elementary search help 66, 68
email 177, 185
endpoint type 236, 270
Enhancement Category 61
Enhancement Framework 26, 61, 63
Enhancement Info System 25
Enjoy Control Event 299
enqueue 171
Enterprise Service 26, 37, 91
Enterprise Service Browser 26, 250
Enterprise Service Modeling 18
Enterprise Service Repository 26, 250,
264
enterprise SOA 16, 91, 194
Entry Point 420
ERP system 196
event
CLEANUP 209
namespace 426
OK_CODE 300
ONCLICK 324
onSubmit 402
PAI-based 301
parameter 427
receiver 425
registration 300
subscriber 425
event handler 291, 299, 301, 310, 315,
324,337
WDDoBeforeAction 315, 316
event handler method 310
exception 170, 454
exception class 82, 83, 84, 111, 269
CX_DYNAMIC_CHECK 86
CX_HTTP_EXT_EXCEPTION 455
CX_MDM_MAIN_EXCEPTION 209
CX_NO_CHECK 86
CX_STATIC_CHECK 86
CX_SY_CONVERSION_CODEPAGE 211

WWW.Sap-press.com 477

Index

exception handling 80
execution duration 223
execution space 36
extended code completion 31
Extended Protocol 137, 140, 141
Extensible Markup Language (XML) 18,
19, 34, 37, 112-124, 131, 141, 249,
252, 266, 267, 356, 376, 382, 395,
404, 405, 427, 449-460
document 404
XML-based interface 382

Extensible Stylesheet Language Transfor-
mations (XSLT) 34, 90, 112, 121, 122,

456

editor 34
extension framework 366
external breakpoint 38

F

factory method 169
factory object 207
fault message 253
FCKeditor 363
field
Boolean 213
OK_CODE 278
OPTION 99
SIGN 99
field catalog 277
field symbol 217, 296
file system 27
File Transfer Protocol (FTP) 119
filter 99
filter object 96
firewall 134
fixed value domain 48
fixture 225, 229
flow content 399
foreign key 57
relationship 44, 54
form context 384, 395
form field 165
form interface 381
Form View 436
friends 75, 78
Front-End Editor 29
FTP — see File Transfer Protocol (FTP)
Fully Buffered 52

function
handleResponse 358

function group 58
SCMS_CONV 113, 115

function module 65, 67, 185, 206, 209,
270, 381, 392, 439
FP_FUNCTION_MODEL_NAME 391
FP_JOB_CLOSE 392
FP_JOB_OPEN 390
REUSE_ALV_GRID_DISPLAY 282
SCMS_STRING_TO_FTEXT 187
SCMS_XSTRING_TO_BINARY 113,187
SDOK_MIMETYPE_GET 338, 463

functional form 174

G

Generic API layer 202
generically typed 215
getter method 174
graphic content 384
graphic node 384
graphic reference 384
GUI client 196

GUI status 287, 298

H

header field
~path_info 454
header line 278
hierarchical-sequential list 275
Hypertext Markup Language (HTML) 27,
32, 34, 186, 294, 303, 349, 355, 424
email 186
page 104
tags 27
viewer 294,297
viewer control 294
Hypertext Transfer Protocol (HTTP) 346,
449, 451
destination 133
element 351
handler 451
HTTPS 135,412
request 346, 450
response 347
return code 454
server cache 362

478 WWW.Sap-press.com

ICF — see Internet Communication Fra-
mework (ICF)

ICF Service Node — see Internet Commu-
nication Framework (ICF)

ICM — see Internet Communication
Manager (ICM)

Identity Management 421

index 62

inheritance 75, 83, 167

Inside-Out 18, 249

Integration Builder 249-256

interface 40, 331
IF_HTTP_EXTENSION 452
IF_HTTP_HEADER_FIELDS 454
IF_HTTP_HEADER_FIELDS_SAP 454
IF_HTTP_STATUS 455
IF_MDM_ACCESSOR 207
IF_MDM_ADMIN 207
IF_MDM_API_CONFIG 208
IF_MDM_CORE_SERVICES 208
IF_MDM_META 208
IF_WSPROTOCOL 140
SAI_TOOLS 123

internal table 279

Internet address type 181

Internet Communication Framework
(ICF) 449-454
handler 450
ICF Service Node 19

Internet Communication Manager (ICM)
34,178, 361, 452

Internet Mail Gateway 178

Internet Transaction Server (ITS)
Integrated ITS 413, 424

interval value domain 48

iView 19, 413, 415, 416, 418, 420, 421,
422,424, 433

iView Wizard 416

iXML 456, 458

iXML library 456

J

J2EE Engine 430
Jakarta Struts 164
Java 195

Java Server Faces 164

Index

Java Swing Library 164

JavaScript 32, 34, 303, 358, 368, 371,
372,428

JPEG image 26

K

Key field 54
Knowledge Management 408

L

language key 56

language translation 48

layout 342

L-Frame 444

link 313

list 27

load balancing 409

local class 222

local event handler class 290

local path prefix 133

Lock Object 64

locking 171

logging 136

Logical Object Name 204, 205, 207, 210,
211

logical port 125, 126, 130, 133, 140

login group 56

Logon method 412

Logon procedure 134

Logon ticket 135

Lowercase flag 51

M

Maintenance view 56, 58, 59

managed object 75, 76

mapping 132

master data 198
harmonization of 194

Master Data Management — see SAP Net-
Weaver Master Data Management

MDM — see SAP NetWeaver Master Data
Management

MDM4A — see SAP NetWeaver Master
Data Management

mds.ini 206

message 170

WWW.Sap-press.com 479

Index

area 314

class 83, 84

fault 269

ID 138

interface 263, 270

manager 84

server 409

text 88

type 253,261

variable 65
method

ASSERT 225, 226, 233
ASSERT_EQUALS 227,229
ASSERT_NOT_INITIAL 230
ASSERT_SUBRC 226
asynchronous 157

ATTACH 151, 155
ATTACH_FILE_TO_RESPONSE 338
BIND_ELEMENT 340
BIND_TABLE 336

BUILD 155

chaining 175
CL_BSP_RUNTIME=>CONSTRUCT_BSP_

URL 367

CLASS_CONSTRUCTOR 76
COMMIT 104

CONSTRUCTOR 87
CREATE_COMPONENT 329
CREATE_PERSISTENT 79, 82
CREATE_WINDOW_FOR_CMP_USAGE

330

DELETE 104
DELETE_PERSISTENT 82
DISPATCH_INPUT 165, 348
DO_AT_BEGINNING 366
DO_REQUEST 359, 362
Sfactory 169

GET_FORM_FIELD 359
GET_PERSISTENT 80, 82
GET_PERSISTENT_BY_QUERY 81
getResponseHeader 358

getter 174

HANDLE_REQUEST 452, 462
HAS_ACTIVE_COMPONENT 329
ON_USER_COMMAND 291, 292
QUERY 213
RETRIEVE_SIMPLE 214

SET 103
SET_SAVE_RESTRICTION 287

480

SET_SCREEN_POPUP 292
SET_SCREEN_STATUS 289
SETUP 225, 228, 229
simple 212
SPLICE 106
TEARDOWN 225, 228
test 225
TO_BOOLEAN 369
TO_ENUM 369
transactional 168
WDDOINIT 322
Microsoft NET 195
Microsoft Excel 36
Microsoft Foundation Classes 164
MIME — see Multipurpose Internet Mail
Extensions (MIME)
modal dialog 312
model 163, 164, 390, 405
attribute 168
binding 165, 166
class 18, 40, 90, 183, 268, 304, 395,
462
Model View Controller (MVC) 163-166,
295, 303, 348, 353, 430
Mount MDM Server 198
Multipurpose Internet Mail Extensions
(MIME) 26, 336, 364, 463
repository 26, 364
type 338, 384, 385, 463
MVC — see Model View Controller
(MVC)

N

name mapping 237

namespace 252, 254, 266, 409, 453
Navigation stack 24

.NET Connector 119

New System Wizard 408

NULL 212

o

object
MO_ACCESSOR 208
XMLHTTPRequest 357
Object Browser 250
list 25
object navigation tree 24

WWW.Sap-press.com

object reference 95, 97
object-oriented 72
abstraction 73
programming 35
occurrence 260
offline form 402
Open Source 357
Open SQL 72
outbound plug 310, 405
Outside-In 249
overflow leader 400

P

package 17,41, 73,122, 123, 266, 277
hierarchy 40, 41, 42
interface 42

page 420

PAI — see Process After Input (PAI)

parameter 82
abap/test_generation 222
RETURNING 148,174
WDEVENT 337

pass by value 149

pattern 257, 258, 280

Payload 140

PBO — see Process Before Output (PBO)

PBO/PAI — see Process Before Output/
Process After Input (PBO/PAI)

PCD — see Portal Content Directory
(PCD)

PDF — see Portable Document Format
(PDF)

persistent attribute 94

persistent class 77, 78

Persistent Data Mapper 77

persistent object 72, 73,75, 77,79, 91,
102, 157, 163, 186, 217

persistent object class 17

Persistent Object Service 72

Personal Value List 313

PHP 350

PI — see SAP NetWeaver Process Integra-
tion

plug 310

polymorphism 83

popup signal 440, 441

popup window 312, 325

WWW.Sap-press.com

Portable Document Format (PDF) 323,
375,377,381, 390, 392, 404
object class 403
preview 387, 388

Portal — see SAP NetWeaver Portal

Portal Content 198, 416

Portal Content Directory (PCD) 422

Portal Content Folder 420

Portal Content Repository 407

Portal Eventing 424, 425

Portal Manager object 426

Portal Page 416

Portal Role 421

Portal Service 444

Private 93

Private instantiation 76, 92

Process After Input (PAI) 296, 300, 301,
314

Process Before Output (PBO) 296

Process Before Output/Process After
Input (PBO/PAI) 90
module flow 295

Process Integration — see SAP NetWea-
ver Process Integration

Project Muse 443

property box 33

Property Category 410, 413

Property Editor 420

Protected 75,78

Protected instantiation 74

Provider Framework 203

Provider Framework layer 203

proxy class 125, 126, 127

proxy object 17, 122, 140

pseudo comment 222

publicly visible 42

Q

Query Manager 81
query service 81, 82,96, 99, 218

R

random number generator 110

ranges table type 98

Reader Rights 377

Really Simple Syndication (RSS) 455,
457, 460

481

Index

Index

Advisory Board 457
feed 19, 449, 455
reader 460
refactoring 34
Refactoring Assistant 17, 35
reference variable 218
register 291
Regular Expressions 187, 189, 257, 338
relational database 90
Remote Function Call (REC) 209, 378,
410, 413, 431, 433, 436, 437
destination 133
enabled function module 235
repository 195, 200, 204
Repository Browser 25
Repository Information System 27
response object 337
RFC — see Remote Function Call (RFC)
RISK_LEVEL 223
role 420
role-based 407, 416
RSS — see Really Simple Syndication
(RSS)
Ruby on Rails 164, 357
Runtime Type Services (RTTS) 176, 177

S

SAP Business Workplace 178

SAP Customer Relationship Management
(SAP CRM) 408

SAP Data Modeler 46

SAP Developer Network (SDN) 64

SAP ERP 408

SAP ERP 6.0 16

upgrade 39
SAP GUI 40, 347, 410, 413, 424, 433,
447

SAP GUI for Windows 29

SAP Interactive Forms by Adobe — see
Adobe Forms

SAP List Viewer (ALV) 273, 307, 320
Object Model 19, 273, 276, 282, 294
REUSE_ALV_GRID_DISPLAY 274

SAP Logon 411

SAP MDM Console 196, 198

SAP MDM Data Manager 196

SAP NetWeaver 196

SAP NetWeaver Application Server 408

482

Java 376

SAP NetWeaver Business Client 443-
447

SAP NetWeaver Business Intelligence
408

SAP NetWeaver Exchange Infrastructure
— see SAP NetWeaver Process Integra-
tion

SAP NetWeaver Master Data Manage-
ment 18, 193
ABAP API 201, 202, 203, 205, 209,

211, 212

repository 196, 213
server 198

SAP NetWeaver Portal 19, 40, 407

SAP NetWeaver Process Integration 18,
130, 131, 132, 137, 139, 141, 249

SAP NetWeaver Visual Composer 19,
425, 429-437, 442

SAPR/3 23

SAP Service Marketplace 379

SAP Smart Forms 375, 382, 387, 389,
391, 394

SAP Web Application Server 33

SAPconnect 178, 180

SAPlink 20, 357

SAProuter 408

SAPscript 375, 387, 394

screen control 296, 297

SDN — see SAP Developer Network
(SDN)

search help 66, 312

search help exit 67

secondary index 63

Secure Sockets Layer (SSL) 119, 238, 379
Client Certificate 135

selection screen 67

SELECT-OPTION 82, 97, 313

self-service website 40

Server Port 411

server proxy 18, 264, 265, 266, 267,
269, 271

service
consumption 431
definition 240, 270
Definition Wizard 270
handler 460, 461
interface 270
Node Hierarchy 24

WWW.Sap-press.com

operation 268

port 379

Repository 131
session management 446
shared memory 149, 163, 347

shared memory object 18, 90, 144, 157,

159
area class 144
area handle 152
area structure 156
Automatic Area Structuring 156
IF_SHM_BUILD_INSTANCE 155
root class 144
Simple Mail Transfer Protocol (SMTP)
26,178
Plug-In 178
port 180
Single Sign-On (SSO) 40, 135, 412
Singleton 334, 335
SLD — see System Landscape Directory
(SLD)
smart client 304

SMTP — see Simple Mail Transfer Proto-

col (SMTP)
SOAP 120, 121, 131, 139, 140
Action 136
Software Component 41, 252
Software Component Version 254
split screen view 30
splitter 297
SQL — see Structured Query Language
(sQL)
SSL — see Secure Sockets Layer (SSL)
SSO — see Single Sign-On (SSO)
State Management 138
state property 315
stateful 138, 348
statement
CALL TRANSFORMATION 34, 112,
113, 116
CLASS DEFINITION 222
COMMIT 82
COMMIT WORK 111
CREATE OBJECT 75,160
DELETE 103
FIND 189
GET REFERENCE OF 218
INSERT 80
IS SUPPLIED 173

WWW.Sap-press.com

MESSAGE 83
RAISE 89
RAISE EXCEPTION 87, 89
REPLACE 189
SHARED BUFFER 143
SHARED MEMORY 143
TRY...CATCH 80,170
TYPE REFTO 95
UPDATE 103
WAIT 157
WHERE 81, 99
WRITE 276
Structured Query Language (SQL) 62,
90, 98, 109
Statement 72
trace 62
style 351
style sheet 349
subclass 282, 284
subform 388, 398, 399
superclass 167
SVG Viewer 430
syntax highlighting 30
syntax sensitive formatting 30
system alias 413
system connection 407
system field
SY-SUBRC 83, 111
system icon 384
system ID prefix 409
system landscape 407
System Landscape Directory (SLD) 252

T

table 49, 398
buffering 348
FPCONNECT 378
locking 64
row 399
type 95
view 436
table maintenance 50, 51, 56
Generator 58
Settings 50
System 51
Tag Browser 26
test class generation 227
test repository 26

483

Index

Index

Time To Live (TTL) 459
toolbar 305
toolbox 33
trace file 136
transaction

LPCONFIG 126, 130

MDMAPIC 204, 208

SAINT 203

SBWP 178

SCC4 222

SCOT 179, 180, 182, 183

SD11 46

SE80 24

SHMA 150

SHMM 143, 154, 157

SICF 24,178, 243

SM59 133,378

SMICM 24

SOST 183

SPAM 203

STRUSTSSO2 412

WSADMIN 243, 244, 271

WSCONFIG 239, 242

WSSPROFILE 139
transaction coordination 103
transaction iView 424
transactional method 168
transformation 112
transient data 72
translatable 86
translation 49, 59
transparent table 51
transport guarantees 271
transport layer 41
Transport Management System 34
Transport Organizer 27
tray 305
trusted connection 206
TTL — see Time To Live (TTL)
two process debugger 36
type

ANY 176

LinkToAction 337

WDY_BOOLEAN 317
type definition 254, 255, 259

484

U

UDDI — see Universal Description, Dis-
covery and Integration (UDDI)

Ul element
ContextualPanel 305
FileDownload 336
FileUpload 339, 340, 403
InputField 312,315
InteractiveForm 395, 402
LinkToAction 324
Table 313,332
TablePopin 332, 333
TablePopinToggleCell 333
TableView 323
TabStrip 308, 313
TextView 324
TransparentContainer 333
ViewContainerUlElement 305, 307

UIDPW — see User Name and Password
via User Mapping (UIDPW)

UME — see User Management Engine
(UME)

unbounded 260

Unicode 180, 181, 211
UTF-8 180

Uniform Resource Locator (URL) 359,
418, 450, 462
parameter 359, 462

Unit test 26

Universal Description, Discovery and
Integration (UDDI) 131

UNIX 121

upgrade 63

upload 108

URL — see Uniform Resource Locator
(URL)

use access 123

used component 309

user maintenance 414

user management 411

User Management Engine (UME) 421

user mapping 412, 413, 414

User Name and Password via User Map-
ping (UIDPW) 412

user-defined validation 368

Utility method 175

WWW.Sap-press.com

\'

validation check 315
validator 370
value
&NC& 58
IS INITIAL 173
templateSource 395
TYPE REF TO DATA 215, 217, 218
value help 49, 54, 311, 312
Value Help Configuration Wizard 437,
440, 441
value help service 439
value range 48
variant 271
view 309, 310, 326, 342, 354
virtual interface 240
visibility 78
Visual Administrator 377, 380
Visual Composer — see SAP NetWeaver
Visual Composer

w

Web AS Path 413

Web Dynpro 19
component 166
component controller 426
context 395,397, 402

Web Dynpro ABAP 32, 38, 66, 67, 68,
84, 90, 98, 164, 166, 176, 303, 304,
345, 363, 381, 395, 401-403, 413-
425, 444, 449
debugger 38
utility class 459

Web Dynpro Code Wizard 316, 318

web server 26

Web Service 17, 18, 90, 119, 120, 126-
132,137, 141, 195, 198, 209, 235,
249, 259, 263, 269, 271, 376, 431, 449
Inside-Out 18, 249

Index

message 135
operation 261
Outside-In 249
Proxy 93
runtime 137
security profile 138
system configuration 431
wizard 236
Web Services Description Language
(WSDL) 120-125, 132, 243, 245, 249,
252, 258, 263, 265, 271, 431
Web Services Homepage 243, 244, 271
Web Services Infrastructure 130
window 309, 325, 341
window controller 327
window manager 326, 327, 330
with message class 84, 86
work area 278
work process 36, 66
Workbench option 29
Workbench setting 28
Worklist 255
Workset 416, 422
WSDL — see Web Services Description
Language (WSDL)
WYSIWYG 32, 303

X

X.509 Certificate 119

XI — see SAP NetWeaver Process Integra-
tion

XML — see Extensible Markup Language
(XML)

XSLT — see Extensible Stylesheet Langu-
age Transformations (XSLT)

z

ZIP 91, 105, 106, 113-116
ZIP compression 17

WWW.Sap-press.com 485

	SAP PRESS—Extract
	Next Generation ABAP Development
	Rich Heilman, Thomas Jung

	Contents at a Glance
	Contents
	Introduction

	5 Shared Memory Objects
	5.1 Getting Started
	5.1.1 Area Root Class Creation
	5.1.2 Defining the Shared Memory Area
	5.1.3 Testing the Shared Memory Object
	5.1.4 Shared Memory Monitor

	5.2 Automatic Preloading
	5.2.1 Adding the Interface
	5.2.2 Modifying the Read Program

	5.3 Implementing into the Business Object Layer
	5.3.1 Developing a Test Program
	5.3.2 Modifying the Business Object Class
	5.3.3 Testing the Changes

	Index

	www.sap-press.com
	(c) Galileo Press GmbH 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check true
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (Euroscale Coated v2)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /PDFX3:2002
]
 /PDFXOutputConditionIdentifier (FOGRA1)
 /Description <<
 /ENU (Use these settings to report on PDF/X-3 compliance and produce PDF documents only if compliant. PDF/X is an ISO standard for graphic content exchange. For more information on creating PDF/X-3 compliant PDF documents, please refer to the Acrobat User Guide. The PDF documents can be opened with Acrobat and Reader 4.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e002c00200075006d002000650069006e0065006e00200042006500720069006300680074002000fc00620065007200200064006900650020005000440046002f0058002d0033002d004b006f006d007000610074006900620069006c0069007400e4007400200065007200680061006c00740065006e00200075006e00640020005000440046002d0044006f006b0075006d0065006e007400650020006e00750072002000640061006e006e0020007a0075002000650072007300740065006c006c0065006e002c002000770065006e006e0020007300690065002000fc0062006500720020006400690065007300650020004b006f006d007000610074006900620069006c0069007400e400740020007600650072006600fc00670065006e002e0020005000440046002f00580020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020007a0075006d002000410075007300740061007500730063006800200076006f006e0020006400690067006900740061006c0065006e00200044007200750063006b0076006f0072006c006100670065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d0033002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200034002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064002700e900760061006c0075006500720020006c006100200063006f006e0066006f0072006d0069007400e9002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d003300200065007400200064006500200063006f006e0064006900740069006f006e006e006500720020006c0061002000700072006f00640075006300740069006f006e00200064006500200064006f00630075006d0065006e007400730020005000440046002000e000200063006500740074006500200063006f006e0066006f0072006d0069007400e9002e0020005000440046002f0058002000650073007400200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200065006e0020007300610076006f0069007200200070006c0075007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020005000440046002f0058002d0033002c00200063006f006e00730075006c00740065007a0020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e00200034002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF005000440046002f0058002d00336e9662e0306e30ec30dd30fc30c87528304a30883073658766f84f5c62107528306b4f7f75283057307e30593002005000440046002f00580020306f30b030e930d530a330c330af30b3002030f330c630f330c4590963db306b304a3051308b002000490053004f00206a196e96306730593002005000440046002f0058002d003300206e9662e0306e658766f84f5c6210306b306430443066306f0020004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430024f5c62103057305f00200050004400460020306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200034002e003000204ee5964d30678868793a3067304d307e30593002>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f007300200050004400460020006500200065006d0069007400690072002000720065006c0061007400f300720069006f007300200073006f00620072006500200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d0033002e0020005000440046002f0058002000e900200075006d0020007000610064007200e3006f002000640061002000490053004f00200070006100720061002000740072006f0063006100200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d0033002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000550073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200034002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c00200061007400200072006100700070006f007200740065007200650020006f006d0020006f0076006500720068006f006c00640065006c007300650020006100660020005000440046002f0058002d00330020006f00670020006b0075006e002000700072006f0064007500630065007200650020005000440046002d0064006f006b0075006d0065006e007400650072002c002000680076006900730020006400650020006f0076006500720068006f006c0064006500720020007300740061006e00640061007200640065006e002e0020005000440046002f005800200065007200200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e0067002000610066002000670072006100660069006b0069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006f0076006500720068006f006c0064006500720020005000440046002f0058002d0033002c002000660069006e00640065007200200064007500200069002000620072007500670065007200760065006a006c00650064006e0069006e00670065006e002000740069006c0020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e00650073002000700061007200610020007200650061006c0069007a0061007200200075006e00200069006e0066006f0072006d006500200073006f0062007200650020006c006100200063006f006d007000610074006900620069006c006900640061006400200063006f006e0020005000440046002f0058002d003300200079002000670065006e006500720061007200200064006f00630075006d0065006e0074006f007300200050004400460020007300f3006c006f00200073006900200073006f006e00200063006f006d00700061007400690062006c00650073002e0020005000440046002f005800200065007300200075006e002000650073007400e1006e006400610072002000490053004f0020007000610072006100200065006c00200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200061006300650072006300610020006400650020006300f3006d006f00200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020005000440046002f0058002d0033002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006d00e400e4007200690074007400e400e40020005000440046002f0058002d0033002d00790068007400650065006e0073006f0070006900760075007500640065006e0020006a00610020006c0075006f00640061002000730065006e0020006d0075006b006100690073006900610020005000440046002d0061007300690061006b00690072006a006f006a0061002e0020005000440046002f00580020006f006e002000490053004f002d007300740061006e006400610072006400690073006f006900740075002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e0020006500730069007400790073006d0075006f0074006f002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d0033002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0061007300690061006b00690072006a006f006a0065006e0020006c0075006f006e006e00690073007400610020006f006e002000410064006f006200650020004100630072006f0062006100740020002d006b00e400790074007400f6006f0070007000610061007300730061002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200034002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000760065007200690066006900630061007200650020006c006100200063006f006e0066006f0072006d0069007400e0002000610020005000440046002f0058002d003300200065002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200073006f006c006f00200069006e0020006300610073006f00200064006900200063006f006e0066006f0072006d0069007400e0002e0020005000440046002f0058002d0033002000e800200075006e006f0020007300740061006e0064006100720064002000490053004f00200070006500720020006c006f0020007300630061006d00620069006f00200064006900200063006f006e00740065006e00750074006f0020006700720061006600690063006f002e002000500065007200200075006c0074006500720069006f0072006900200069006e0066006f0072006d0061007a0069006f006e0069002000730075006c006c006100200063007200650061007a0069006f006e006500200064006900200064006f00630075006d0065006e00740069002000500044004600200063006f006e0066006f0072006d0069002000610020005000440046002f0058002d0033002c00200063006f006e00730075006c00740061007200650020006c0061002000470075006900640061002000640065006c006c0027007500740065006e007400650020006400690020004100630072006f006200610074002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200034002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e500200072006100700070006f007200740065007200650020006f006d0020005000440046002f0058002d0033002d006b006f006d007000610074006900620069006c00690074006500740020006f00670020006c0061006700650020005000440046002d0064006f006b0075006d0065006e00740065007200200062006100720065002000680076006900730020006b006f006d007000610074006900620065006c002e0020005000440046002f005800200065007200200065006e002000490053004f002d007300740061006e006400610072006400200066006f00720020006700720061006600690073006b00200069006e006e0068006f006c006400730075007400760065006b0073006c0069006e0067002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d0033002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006b0061006e002000640075002000730065002000690020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200034002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e006400200065006e00640061007300740020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200072006100700070006f007200740065007200610020006f006d0020005000440046002f0058002d0033002d007300740061006e00640061007200640020006f0063006800200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d0020006600f6006c006a00650072002000640065006e006e00610020007300740061006e0064006100720064002e0020005000440046002f0058002000e4007200200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e0020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d002000680075007200200064007500200073006b00610070006100720020005000440046002d0064006f006b0075006d0065006e007400200073006f006d0020006600f6006c006a006500720020005000440046002f0058002d003300200068006900740074006100720020006400750020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e0020006600f600720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFF005000440046002f0058002d00330020d638d658c131c7440020d655c778d55c0020b2e4c74c0020d638d658b418b2940020acbdc6b0c5d0b9cc00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020005000440046002f0058b2940020adf8b798d53d0020b0b4c6a90020ad50d658c5d00020b300d55c002000490053004f0020d45cc900c785b2c8b2e4002e0020005000440046002f0058002d00330020d638d65800200050004400460020bb38c11cb97c0020b9ccb4dcb2940020ac83c5d00020b300d55c0020c790c138d55c0020b0b4c6a9c7400020004100630072006f0062006100740020c0acc6a90020c548b0b4c11cb97c0020cc38c870d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200034002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d00200064006500200063006f006d007000610074006900620069006c006900740065006900740020006d006500740020005000440046002f0058002d003300200074006500200063006f006e00740072006f006c006500720065006e00200065006e00200061006c006c00650065006e0020005000440046002d0064006f00630075006d0065006e00740065006e002000740065002000700072006f006400750063006500720065006e002000640069006500200063006f006d007000610074006900620065006c0020007a0069006a006e002e0020005000440046002f0058002000690073002000650065006e002000490053004f002d007300740061006e0064006100610072006400200076006f006f00720020006800650074002000750069007400770069007300730065006c0065006e002000760061006e002000670072006100660069007300630068006500200069006e0068006f00750064002e002000520061006100640070006c0065006500670020006400650020006700650062007200750069006b00650072007300680061006e0064006c0065006900640069006e0067002000760061006e00200057004b00450020003200300030003500310030003100340020005000440046002f00580033>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

	Schaltfläche2:

